The hydrogen bond system may be divided into four types:
(i) two strong water-thiosulphate oxygen hydrogen bonds, $\mathrm{O}(4)-\mathrm{H}(1) \cdots \mathrm{O}(3)(2.73 \AA)$ and $\mathrm{O}(5)-\mathrm{H}(3) \cdots \mathrm{O}(3)(2 \cdot 77 \AA)$,
(ii) two weak water-thiosulphate oxygen hydrogen bonds, $\mathrm{O}(4)-\mathrm{H}(2) \cdots \mathrm{O}(2)(2.94 \AA)$ and $\mathrm{O}(5)-\mathrm{H}(4) \cdots \mathrm{O}\left(3^{*}\right)(2.81 \AA)$,
(iii) two water-water oxygen hydrogen bonds $\mathrm{O}(6)-\mathrm{H}(5) \cdots \mathrm{O}\left(4^{*}\right)(2.73 \AA)$ and $\mathrm{O}(7)-\mathrm{H}(8) \cdots \mathrm{O}\left(8^{*}\right)(2.79 \AA)$,
(iv) three water-sulphur hydrogen bonds, $\mathrm{O}(6)-\mathrm{H}(6) \cdots \mathrm{S}\left(\mathrm{I}^{*}\right)(3 \cdot 30 \AA) \mathrm{O}(7)-\mathrm{H}(7) \cdots \mathrm{S}\left(1^{*}\right)$ $(3 \cdot 13 \AA)$ and $\mathrm{O}(8)-\mathrm{H}(10) \cdots \mathrm{S}(1)(3 \cdot 40 \AA)$.
In the case of the water molecule $\mathrm{H}(9)-\mathrm{O}(8)-\mathrm{H}(10)$, Taylor \& Beevers have suggested that both the hydrogen atoms are bonded to the sulphur atom. As revealed by the neutron study, the existence of a hydrogen bond between the atom $\mathrm{H}(9)$ and the sulphur atom is doubtful, since the distance $\mathrm{H}(9) \cdots \mathrm{S}\left(1^{*}\right)$ is $2 \cdot 68 \AA$ and the angle $\mathrm{O}(8)-\mathrm{H}(9) \cdots \mathrm{S}\left(1^{*}\right)$ is 119°, a considerable deviation from linearity. Apart from the sulphur atom, the nearest atom is $\mathrm{O}(2)$ which makes an angle $\mathrm{O}(8)-\mathrm{H}(9) \cdots \mathrm{O}(2)$ of 163°, but in this case $\mathrm{H}(9) \cdots \mathrm{O}(2)$ is $2.48 \AA$ and $\mathrm{O}(8) \cdots \mathrm{O}(2)$ is $3.39 \AA$. Hence it is reasonable to assume that the atom $\mathrm{H}(9)$ does not participate in any meaningful hydrogen bonding. The hydrogen atoms $\mathrm{H}(6), \mathrm{H}(7)$ and $\mathrm{H}(10)$
may be regarded as being involved in hydrogen bonding to the sulphur atom. In these cases the $\mathrm{H} \cdots \mathrm{S}$ distances range from 2.38 to $2.59 \AA$ and the $\mathrm{O} \cdots \mathrm{S}$ distances from 3.13 to $3.40 \AA$. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ angles are in the region $142 \cdot 8$ to $145 \cdot 2^{\circ}$. Recently Muir (1969) has reported an $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ bond in $\mathrm{BaS}_{2} \mathrm{O}_{3} . \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{O} \cdots \mathrm{S}, 3 \cdot 298, \mathrm{H} \cdots \mathrm{S}, 2 \cdot 367 \AA$ and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ angle of 163°. These are the first reports of hydrogen bonding to a sulphur atom revealed by neutron diffraction.

This research has been made possible by grants from the joint project of India, the Philippines and the International Atomic Energy Agency. The authors' thanks are due to Dr R. Chidambaram for helpful discussions and to the referee for pointing out the correct lone-pair coordination of one of the water molecules.

References

Baggio, S., Amzel, L. M. \& Becka, L. N. (1969). Acta Cryst. B25, 2650.
Busing, W. R. \& Levy, H. A. (1962). ORFLS. ORNL-TM305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Chidambaram, R., Sequeira, A. \& Sikka, S. K. (1964). J. Chem. Phys. 41, 3616.

El Saffar, Z. M. (1968). Acta Cryst. B24, 1131.
Muir, L. M. (1969). Nature, Lond. 224, 686.
Padmanabhan, V. M., Mehdi Ali, S. \& Srikanta, S. (1965). Acta Cryst. 18, 567.

Taylor, P. G. \& Beevers, C. A. (1952). Acta Cryst. 6, 311.

The Crystal Structure of NbCoB

By P.I.Krypyakevich, Yu. B. Kuz'ma and Yu.V.Voroshilov
Department of Inorganic Chemistry, Lviv State University, Lviv, Ukrainian SSR, USSR
and Clara Brink Shoemaker* and David P. Shoemaker*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

(Received 3 November 1969)
The crystal structure of NbCoB has been determined by single-crystal X-ray analysis. The lattice constants are $a=3 \cdot 266$ (1), $b=17 \cdot 177$ (3), $c=5 \cdot 947$ (3) \AA, the unit cell contains 30 atoms, and the space group is $\operatorname{Pmmn}\left(D_{2 h}^{13}\right)$. The atomic parameters have been refined by least-squares analysis to a final R value of 0.086 , based on the 265 observed reflections. The NbCoB structure is a combination of the TiNiSi- and ZrAlNi -type structures (isostructural with $\mathrm{Cl}_{2} \mathrm{~Pb}$ and $\mathrm{Fe}_{2} \mathrm{P}$ respectively): the slightly deformed trigonal prisms $\left[\mathrm{BM}_{6}\right]$ form columns of three types - isolated, connected by two, and by three edges. The nets (two per cell) perpendicular to the x axis are built of pentagons, quadrangles and triangles. The coordination numbers are $17(\mathrm{Nb}), 12(\mathrm{Co})$ and $9(\mathrm{~B})$; the coordination polyhedra are derived from pentagonal, tetragonal and trigonal prisms respectively.

Introduction

The ternary compound NbCoB was revealed in the course of an X-ray investigation of the $\mathrm{Nb}-\mathrm{Co}-\mathrm{B}$

[^0]system; at $800^{\circ} \mathrm{C}$ it exists in equilibrium with Co , $\mathrm{NbCo}_{2}, \mathrm{NbB}$ and $\mathrm{Nb}_{2} \mathrm{Co}_{21} \mathrm{~B}_{6}$. The following dimensions of the orthorhombic NbCoB cell were found: $3.26,5.93$ and $17.08 \AA$ (Kuz'ma, Ciolkovsky \& Baburova, 1968). Stadelmaier \& Schöbel (1966) ascribe the composition $\mathrm{NbCo}_{2} \mathrm{~B}$, rather than NbCoB , to the second ternary compound in this system.

The purpose of the present work is the determination of the crystal structure of NbCoB .

Space group and unit cell

The lattice constants refined on the basis of the rotation (a) and Weissenberg patterns (b, c) are the fol-
lowing:

$$
a=3 \cdot 266(1), b=17 \cdot 177(3), c=5 \cdot 947(3) \AA .
$$

The unit cell contains 10 formula units ($d_{\text {exp }}=7.99$ $\mathrm{g} . \mathrm{cm}^{-3}, d_{\mathrm{calc}}=8.03 \mathrm{~g} . \mathrm{cm}^{-3}$). The extinctions in the diffraction pattern indicate only the presence of an n plane perpendicular to \mathbf{c}; thus the structure has the
(b)

Fig. 1. The genesis of the NbCoB structure $\left[(b)\right.$; origin at $m m n$, that is at ($\frac{1}{4} \frac{1}{4} 0$) from origin used in Table 1$]$ from the ZrAlNi [(a); hexagonal and orthorhombic cells] and TiNiSi (c) type structures.

	Projection on	Nets		Circles		
		Solid line	Broken line	Large	Intermediate	Small
(a)	(001)	$z=0$	$\frac{1}{2}$	Zr	Al	Ni
(b)	(100)	$x=\frac{1}{2}$	0	Nb	Co	B
(c)	(001)	$z=\frac{3}{4}$	$\frac{1}{4}$	Ti	Ni	Si

diffraction group mmmPn--, i.e. the space groups $P m m n$ or $P m 2_{1} n$. [The choice of axes does not comply with the setting rules adopted in Crystal Data (1963)].

Structure determination

In deriving the trial structure we noted the proximity of the value of the smallest lattice constant of NbCoB to those constants of MoCoB [TiNiSi type, Shoemaker \& Shoemaker (1965) isostructural with $\mathrm{Cl}_{2} \mathrm{~Pb} ; b=3.251 \AA$, Kuz'ma, Krypyakevich \& Chepiha (1968); $b=3 \cdot 232 \AA$, Jeitschko (1968*)] and NbFeB [ZrAlNi type, Krypyakevich, Markiv \& Melnyk (1967) isostructural with $\mathrm{Fe}_{2} \mathrm{P} ; c=3 \cdot 20 \AA$, Kuz'ma (1967)]; these constants are equal to the altitudes of the trigonal prisms $\left[\mathrm{BM}_{6}\right]$ which one can regard as an essential feature of the structures.

The diffraction pattern shows that the intensities for layer lines $h+2$ are equal to the corresponding ones for layer lines h (except for normal decline). The atoms are therefore arranged in layers perpendicular to the shortest axis, with a spacing of half the lattice translation in that direction, as is also the case in the previously mentioned structures. Taking into account the cell dimensions of these structures, a trial structure (see Fig. 1) was derived in space group Pmmn consisting essentially of two mirror-reflected MoCoB cells (total content: 24 atoms) connected by six additional atoms situated simultaneously in 'horizontal' and 'vertical' m planes, as is the case in NbFeB and also in $\mathrm{Re}_{3} \mathrm{~B}$ (Aronsson, Bäckman \& Rundqvist, 1960). The possibility of small deviations from space group Pmmn, leading to $P m 2_{1} n$, is not excluded, but the trial structure refined satisfactorily in the higher space group.

The refinement of the atomic parameters was carried out with the intensity data for 265 reflections estimated visually from Weissenberg photographs (Mo $K \alpha$ radiation); 106 additional reflections were too weak to be observed. Only layer lines with $h=0,1$ and 2 were recorded. The intensities were reduced to a common scale by means of precession photographs (y and z axes). The structure factors were calculated taking into account the real part of the corrections for anomalous
dispersion (Cromer, 1965) and the reflections with $F_{o}>150$ were corrected for secondary extinction by means of the formula $F_{o}{ }^{\text {corr }}=F_{o}\left(1+g I_{o}\right)$ with $g=$ 4.37×10^{-6} (Zachariasen, 1963; largest correction about 15%). For the absorption correction (the dimensions of the irregularly shaped crystal fragment were $0.015 \times 0.008 \times 0.005 \mathrm{~cm} ; \mu=206 \mathrm{~cm}^{-1}, \quad \mu / d=25.19$ $\mathrm{cm}^{2} . \mathrm{g}^{-1}$) we used the program written by Wuensci \& Prewitt (1965). The correction factor applied to the intensities varied between 1.97 and 1.60 . The atomic parameters were refined by the full-matrix leastsquares program of Busing, Martin \& Levy (1962) as modified by Stewart \& Kundell to conform with the X-ray 67 (1967) Program System.* The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. The standard errors in the structure amplitudes, on which the weights were based, were set equal to 10 for all reflections with $\left|F_{o}\right| \leq 100$ and to $0 \cdot 10\left|F_{o}\right|$ for $\left|F_{o}\right|>100$. The 22 parameters varied were: one scale factor, all positional parameters and isotropic temperature factors on the Nb and Co atoms.
The structure refined to an R index $\left(\Sigma|\Delta F| / \Sigma\left|F_{o}\right|\right)=$ 0.123 for observed reflections only; the weighted R was 0.145 and the standard deviation of an observation of unit weight was $1 \cdot 29$. At this point one of the referees pointed out that most differences $\left|F_{o}\right|-\left|F_{c}\right|$ were positive for $\left|F_{o}\right|<93$. This seemed to indicate that a systematic intensity-dependent error had been made in the estimation of the intensities. To correct for this the explicit extinction correction was taken out and all $\left|F_{o}\right|$ were multiplied by the function: $-0.0000152 F_{o}^{2}$ $+0.00614\left|F_{o}\right|+0.528$, derived empirically from a plot of $\left|F_{c}\right| /\left|F_{o}\right|$ versus $\left|F_{o}\right|$. The structure was now refined with individual layer scale factors to an R index of 0.086 (observed reflections only); $R_{w}=0.109$ and the standard deviation of an observation of unit weight $=0.95$. In the last cycles 27 parameters were varied: all positional parameters, and isotropic temperature factors and occupancy factors of Nb and Co (the three layer scale factors being kept constant). The temperature and occupancy factors of the boron atoms were not refined, because of the very large standard deviations on them. The correlation coefficients between

[^1]Table 1. Atomic parameters for NbCoB
Space group Pmmn; origin at \bar{I}, standard deviations in parentheses; occ. represents apparent occupancy factor.

	Position	y	z	occ	B	CN
Nb (1)	4(e) $\frac{1}{4} y z$	0.5710 (2)	$0 \cdot 5288$ (6)	0.99 (2)	-0.06 (10)	17
Nb (2)	4(e)	$0 \cdot 6259$ (2)	0.0245 (6)	1.02 (2)	0.03 (11)	17
Nb (3)	$2(b){ }^{\frac{1}{4} \frac{3}{4} z}$		$0 \cdot 6456$ (9)	0.98 (3)	-0.14 (14)	17
$\mathrm{Co}(1)$	4(e)	$0 \cdot 4761$ (3)	$0 \cdot 1457$ (9)	0.94 (3)	$0 \cdot 10$ (16)	12
$\mathrm{Co}(2)$	4(e)	$0 \cdot 3224$ (3)	$0 \cdot 6441$ (10)	1.01 (3)	0.48 (16)	12
$\mathrm{Co}(3)$	2(a) $\frac{1}{4} \frac{1}{4} z$		0.0085 (13)	1.01 (5)	$0 \cdot 32$ (23)	12
B(1)	4(e)	$0 \cdot 451$ (2)	0.770 (7)		0.05	9
B(2)	4(e)	$0 \cdot 348$ (2)	0.271 (7)		$0 \cdot 05$	9
B(3)	2(b)		$0 \cdot 230$ (10)		$0 \cdot 05$	9

temperature factor and occupancy factor are about 0.84 for Nb and Co .

The final parameters, occupancy and B factors are given in Table 1 and the comparisons of F_{o} and F_{c} in Table 2. The temperature factors of two of the Nb atoms are negative by no more than one standard deviation (they were set back to zero in the structure factor calculation). The occupancy factors indicate that within the accuracy of this determination there is no disorder in the occupancy of the Nb and Co sites. No chemical analysis of the compound was made.

Table 2. Observed (left column) and calculated (right column) structure factors for NbCoB
Asterisk indicates non-observed reflection; value listed under F_{o} is $\frac{1}{2} F(\mathrm{~min})$. Each block headed by $H K L$ gives values for reflections starting with given $H K L$. Subsequent entries are for increase of 1 in k for $l \neq 0$, and increase of 2 in k for $l=0$.

Table 3. Observed interatomic distances in \AA for NbCoB

a zigzag ribbon of triangles, running along the x direction. In the ZrAlNi structure there are columns connected by three prism edges and forming hexahedral tubes with an isolated shifted column inside each tube. In the TiNiSi structure the columns are connected by two edges and the sheets are shifted (the prism vertex of a given sheet takes place opposite to the face center of the prism belonging to the other sheet). The NbCoB structure possesses the intermediate location: it contains, like ZrAlNi, tubes with isolated columns inside, and, as in TiNiSi, the sheets are shifted (Fig. 2); the columns are connected by three edges ($\left[\mathrm{B}^{(2)} \mathrm{M}_{6}\right]$ prisms), by two edges ($\left[\mathrm{B}^{(1)} \mathrm{M}_{6}\right]$ prisms) or isolated ($\left[\mathrm{B}^{(3)} \mathrm{M}_{6}\right]$ prisms). There are no $\mathrm{B}-\mathrm{B}$ bondings in the NbCoB structure as well as in its constituents. The binary compound with the NbCoB structure is not known as yet, contrary to the ZrAlNi and TiNiSi cases ($\mathrm{Fe}_{2} \mathrm{P}$ and $\mathrm{Cl}_{2} \mathrm{~Pb}$ types respectively).

In the $\mathrm{Nb}-\mathrm{Co}-\mathrm{B}$ system the close structural analogues of NbCoB are the binary compounds $\mathrm{Co}_{3} \mathrm{~B}$ ($\mathrm{Fe}_{3} \mathrm{C}$ type), $\mathrm{Nb}_{3} \mathrm{~B}_{2}\left(\mathrm{U}_{3} \mathrm{Si}_{2} \mathrm{t}\right.$ \%pe), NbB (CrB type), CoB (FeB type), $\mathrm{Nb}_{3} \mathrm{~B}_{4}\left(\mathrm{Ta}_{3} \mathrm{~B}_{4}\right.$ type) and $\mathrm{NbB}_{2}\left(\mathrm{AlB}_{2}\right.$ type) with the structures containing trigonal prisms $\left[\mathrm{BM}_{6}\right]$. The binary $\mathrm{M}_{2} \mathrm{~B}$ compounds containing such prisms in their structures (i.e. the compounds of the

Fig. 2. The NbCoB structure as the packing of trigonal prisms. Origin at \bar{T} (as in Table 1), projection on (100); solid-line triangles (prism bases) at $x=\frac{3}{4}$, broken line triangles at $x=\frac{1}{4}$.
$\mathrm{Cl}_{2} \mathrm{~Pb}$ and $\mathrm{Fe}_{2} \mathrm{P}$ types) do not exist in this system. The only binary $\mathrm{M}_{2} \mathrm{~B}$ compound $\left(\mathrm{Co}_{2} \mathrm{~B}\right)$ has the structure of the $\mathrm{Al}_{2} \mathrm{Cu}$ type with C.N. 10 (tetragonal-antiprismatic coordination of the B atom by $\mathrm{Co}+2 \mathrm{~B}$ at $2 \cdot 11$ \AA) and C.N. 15; the replacement of half of the Co atoms in $\mathrm{Co}_{2} \mathrm{~B}$ by Nb results in forming of the NbCoB structure with a trigonal-prismatic coordination of the B atom and with the ordered distribution of metal atoms in the positions with unequal coordination numbers (17 and 12).

We wish to thank Professor E. I. Hladyshevsky for discussions, and Mr P. C. Manor and Mrs R. Ogilvie (M.I.T.) for their help in some parts of the experimental and computational work.

References

Aronsson, B., BÄckman, M. \& Rundqvist, S. (1960). Acta Chem. Scand. 14, 1001.
Воку, G. B. (1954). Vvedenie v Kristallokhimiyu, p. 258. Moscow: Izdatel'stvo Moskovskogo Universiteta.
Busing, W. R., Martin, K. O. \& levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Crystal Data (1963). General Ed. J. D. H. Donnay. The American Crystallographic Association.
Jeitschko, W. (1968). Acta Cryst. B24, 930.
Krypyakevich, P. I. (1963). Zh. Strukturnoi Khim. 4, 283.
Krypyakevich, P. I., Markiv, V. Ya. \& Melnyk, Ya. V. (1967). Dopovidi Akad. Nauk Ukr. RSR, Ser. A, p. 750.

KuZ'ma, Yu. B. (1967). Dopovidi Akad. Nauk Ukr. RSR, Ser. A, p. 939.
Kuz'ma, Yu. B., Ciolkovsky, T. I. \& Baburova, O. P. (1968). Izvestiya Akad. Nauk SSSR, Neorganicheskie Materialy, 4, 1081.
Kuz'ma, Yu. B., Krypyakevich, P. I. \& Chepiha, M. V. (1968). Zh. Strukturnoi Khim. 9, 327.

Shoemaker, C. B. \& Shoemaker, D. P. (1965). Acta Cryst. 18, 900.
Stadelmaier, H. H. \& Schöbel, J. D. (1966). Metall, 20, 31.
Wuensch, B. J. \& Prewitt, C. T. (1965). Z. Kristallogr. 122, 24.

X-Ray 67 (1967). Program System for X-ray crystallography. J. M. Stewart et al., Computer Science Center, Univ. of Maryland.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

[^0]: * Present address: Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, U.S.A.

[^1]: * The b and c axes are interchanged between TiNiSi and MoCoB .

